0=-16t^2+75

Simple and best practice solution for 0=-16t^2+75 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+75 equation:



0=-16t^2+75
We move all terms to the left:
0-(-16t^2+75)=0
We add all the numbers together, and all the variables
-(-16t^2+75)=0
We get rid of parentheses
16t^2-75=0
a = 16; b = 0; c = -75;
Δ = b2-4ac
Δ = 02-4·16·(-75)
Δ = 4800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4800}=\sqrt{1600*3}=\sqrt{1600}*\sqrt{3}=40\sqrt{3}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40\sqrt{3}}{2*16}=\frac{0-40\sqrt{3}}{32} =-\frac{40\sqrt{3}}{32} =-\frac{5\sqrt{3}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40\sqrt{3}}{2*16}=\frac{0+40\sqrt{3}}{32} =\frac{40\sqrt{3}}{32} =\frac{5\sqrt{3}}{4} $

See similar equations:

| 2.5x+15=148 | | x+1.5x+15=148 | | 2x-14+3(×+1)=-4 | | (x*x*x)+7x-5=0 | | 2.5x+7.25=79.75 | | 21/2x+7.25=79.75 | | 3(3x-15)=(x+15) | | 3(k-2)12=k6 | | 4(2-6)=3(w+1) | | x-62.1=x/4.9 | | (.22)x=500 | | .22×x=500 | | x+20/6=(1/3)x | | x+20/6=1/3*x | | 3^x=28 | | 5n+18=7n-12 | | 9x-16=-2 | | x+6/8=(3/4)x | | 19+5x=3(-x+3)-11 | | 5u/8=25 | | .02x=18 | | x+71+70+50=180 | | 6(3n+3)=8(6n+3)+1 | | X+2=5x-4 | | 2z+3z*4z=0 | | 16x^2-20))(4x-6))+3=0 | | 160=81-1x | | 35+12x-5=180 | | 2+33x-16x^2=18 | | 12x-5+35=180 | | 2x(4)=7x-7/8 | | 16-(2x-4)-(5x-3x+2)=-4x-(-8x+2) |

Equations solver categories